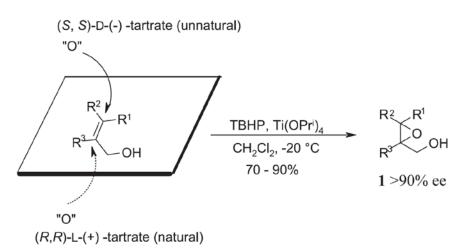
Chapter 6

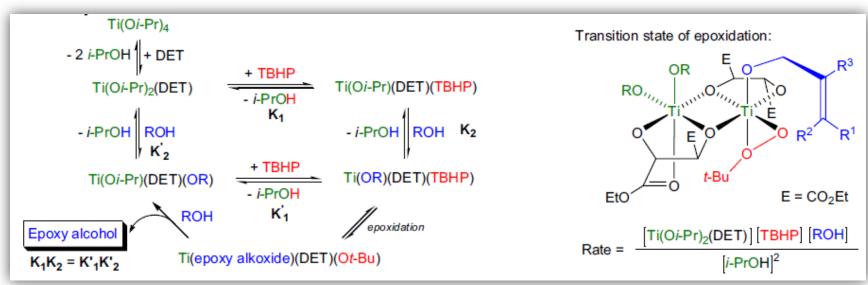
Asymmetric Epoxidation

第**9**次课 (陈加荣)

OUTLINE


6.1 Asymmetric epoxidation of allylic alcohols—Sharpless epoxidation

- 6.1.1 The characteristics of Sharpless epoxidation
- 6.1.2 Mechanism
- 6.1.3 Modifications and improvements of Sharpless epoxidation


6.2 Epoxidation of unfunctionalized olefins

- 6.2.1 Catalytic Enantioselective Epoxidation of Simple Olefins by Porphyrin Complexes
- 6.2.2 Catalytic Enantioselective Epoxidation of Simple Olefins by Salen Complexes
- 6.2.3 Chiral Ketone-Catalyzed Asymmetric Oxidation of Unfunctionalized Olefins
- 6.3 Asymmetric epoxidation of α,β -unsaturated carbonyl compounds
- 6.4 Nucleophilic opening of epoxides and their applications in organic synthesis

6.1 Asymmetric epoxidation of allylic alcohols—Sharpless epoxidation-1980

Sharpless epoxidation—the titanate-mediated epoxidation of allylic alcohols

6.1 Asymmetric epoxidation of allylic alcohols—Sharpless epoxidation

R TBHP R R' Ti(OPrⁱ)₄, (-)-DIPT
$$\stackrel{\circ}{\overline{O}}$$
H R' $\stackrel{\circ}{\overline{O}}$ H Scheme 4–1. Kinetic resolution of secondary allylic alcohols.

6.1.1 The characteristics of Sharpless epoxidation

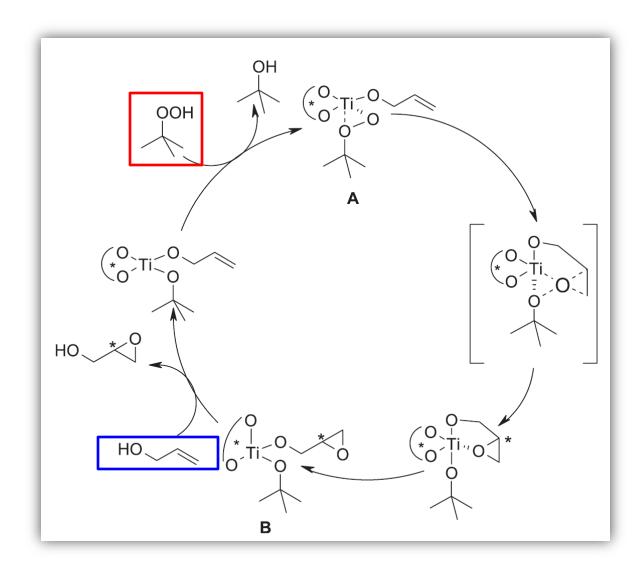
Double asymmetric induction: the enantioselectivity depends on whether the configurations of the substrate and the chiral ligand are matched or mismatched.

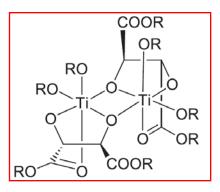
(Z)-substituted allylic alcohols react much more slowly than the corresponding (E)-substituted substrates:

characteristics of Sharpless epoxidation

Simplicity: All the ingredients are inexpensive and commercially available.

Reliability: It succeeds with most allylic alcohols, although bulky substituents are deleterious.


High optical purity: Optical purity of the product is generally >90% ee and usually >95% (99.5% ee is the highest measured accurately to date).


Predictable absolute stereochemistry: Thus far, when dealing with a prochiral allylic alcohol substrate, no exception to the rules has been observed.

Relative insensitivity to preexisting chiral centers: In allylic alcohols with preexisting chiral centers, the diastereofacial preference of the chiral titanium-tartrate catalyst is often strong enough to override diastereofacial preferences inherent in the chiral olefinic substrate.

Versatility of 2,3-epoxy alcohols as intermediates: New selective transformations widen the utility and significance of the reaction.

6.1.2 Proposed Mechanism

dinuclear Ti-tartrate complexes

6.1.3 Modifications and improvements of Sharpless epoxidation

• The CaH₂/SiO₂ System: the reaction time in Sharpless epoxidation could be reduced dramatically by adding a catalytic amount of calcium hydride and silica gel to the reaction system.---Zhou, W.-S.

Substrate	Method	Time (h)	Yield (%)	$[\alpha]_{\mathrm{D}}$	ee (%)	Config.
ОН	A B	96 8	76–80 76	-7.6 -7.8	95	2R,3S
но	A B	72 6	76–80 76.4	+26.5 +25.9	96	2 <i>S</i> ,3 <i>S</i>
OH	A B	360 25	81 84	+16.2 +15.2	91	2S,3S

Conditions: Method A: Epoxidation using Sharpless reagent; method B: addition of 0.05–0.1 equivalent of calcium hydride and 0.1–0.15 equivalent of silica gel to the Sharpless reagent. ee = Enantiomeric excess.

The CaH₂/SiO₂ System: Kinetic resolution

Tetrahedron Lett., 1991, 32, 1467.

Tetrahedron Asymmetry, 1991, 2, 767.

• The 4 Ă Molecular Sieves System: the asymmetric reaction can be achieved with a catalytic amount of titanium tetra-isopropoxide and DET.---Sharpless

Product	Ti–Tartrate	Temp. (°C)	Time (h)	Yield (%)	ee (%)
R	5/6.0	-20	2.5	85	94
ОН	5/7.5	-20	3	89	>98
$R = C_3H_7$, Ph					
O	10/14	-10	29	74	86
ROH	10/14	-20	43		85
$R = C_7H_{15}$, $BnOCH_2$					
C ₃ H ₇ OH	4.7/5.9	-12	11	88	95
$R = C_3H_7$					
PhOOH	5/7.5	-35	2	79	>98
ee = Enantiomeric excess.					

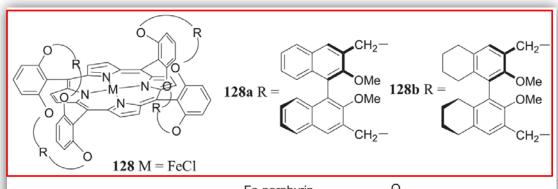
Lower catalyst loading

The 4 Å Molecular Sieves System:-Kinetic resolution----Sharpless

TABLE 4–3. Kinetic Resolution with (+)-DIPT						
Product	Yield (%)	Conversion (%)	ee (%)			
OH	93	53	94			
OH	96	54	94			
OH	93	63	>98			
OH OH	92	51	86			
ee = Enantiomeric excess.						

- Asymmetric Epoxidation Using Polymer-Supported Ti(IV) Catalysts: ease of separation from the reaction system, which allows their efficient recovery and potential reuse.----Canali

CH ₃ —OH 19 CH ₃ —OH					
Entry	Ligands [(%), branching,	Molar ratio	Reaction	Yield	ee
	crosslinking]	substrate: Ti: tartrate	time (days)	(%)	(%)
1	DMT	100:100:120	6	15	28
2	3 (10%)	100:200:400	21	20	51
3	3 (13%)	100:200:400	1	52	41
4	3 (16%)	100:100:200	13	33	41

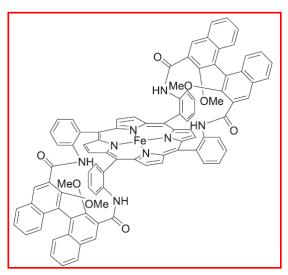

6.2 Epoxidation of unfunctionalized olefins

6.2.1 Catalytic Enantioselective Epoxidation of Simple Olefins by Porphyrin Complexes

Konishi

Porphyrin-metal complexes are natural mimetic substances that have attracted much attention during the past decade. The epoxidation of olefins by porphyrin complexes proceeds well, but with only modest enantioselectivity.

6.2.1 Catalytic Enantioselective Epoxidation of Simple Olefins by Porphyrin Complexes


А	r 🥎	Fe porphyrin	Ar
		Phl, 0 °C, CH ₂ Cl ₂	A

Entry	Substrate ee (%)		Config.	
Lifty	Substrate	128a	128b	Comig.
1		20	56	S
2	NO ₂	80	89	S
3	O ₂ N	74	82	S
	NO ₂			
4		10	70	1 <i>S</i> ,2 <i>R</i>

Oxidant: PhIO

6.2.1 Catalytic Enantioselective Epoxidation of Simple Olefins by Porphyrin Complexes

Collman

C2-symmetric catalyst >75% ee
Oxidant: PhIO

129							
Fe porphyrin Q							
	PhI, room temperature, CH ₂ CI ₂ Ar						
Entry	Substrate	Yield (%)	ee (%)	Config.			
1		95	83	S			
2		isolated yield 89	75	S			
3	F ₅ -11	75	88	S			
4	CI	90	82	S			
5		isolated yield 85	74	S S			
6	NO ₂	74	55	S			
7	NO ₂	78	72	S			
8		isolated yield 75	68	S			
9		80	55	1 <i>S</i> ,2 <i>R</i>			
10		78	49	1 <i>S</i> ,2 <i>R</i>			

6.2.2 Catalytic Enantioselective Epoxidation of Simple Olefins by Salen Complexes

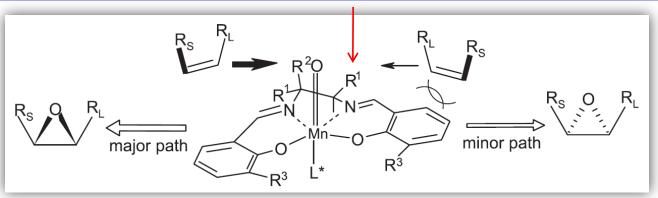
Jacobsen's & Katsuki's groups

The course of the enantioselectivity is interpreted in terms of a side-on approach by the substrate to the active oxomanganese(V) intermediate:

18

Katsuki

TABLE 4–18. Epoxidation of Unfunctionalized Olefins Catalyzed by 119 substrate:catalyst:iodosylbenzene = 1:0.025:1

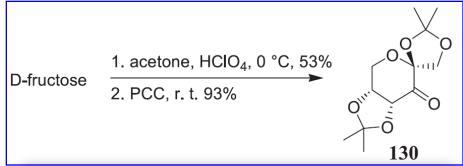

Substrate	ee (%)
Ph	62
Ph	9 (56 when 120 is used)
	91
O ₂ N O AcNH	96
O N O O O O O O O O O O O O O O O O O O	94

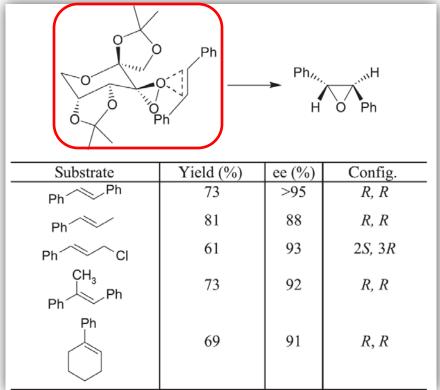
Applications in organic synthesis-Example 1

Applications in organic synthesis-Example 2

Ph CO₂Et NaOCI - 4-PPNO (0.25 eq) Ph CO₂Et MeOH 100 °C 95-97% ee, 56% yield +13% trans isomer
$$\frac{NH_2}{O} = \frac{NH_2}{O} = \frac{NH_3}{O} = \frac{NH_3}{O$$

Katsuki




TL, **1998**, 39, 4325.

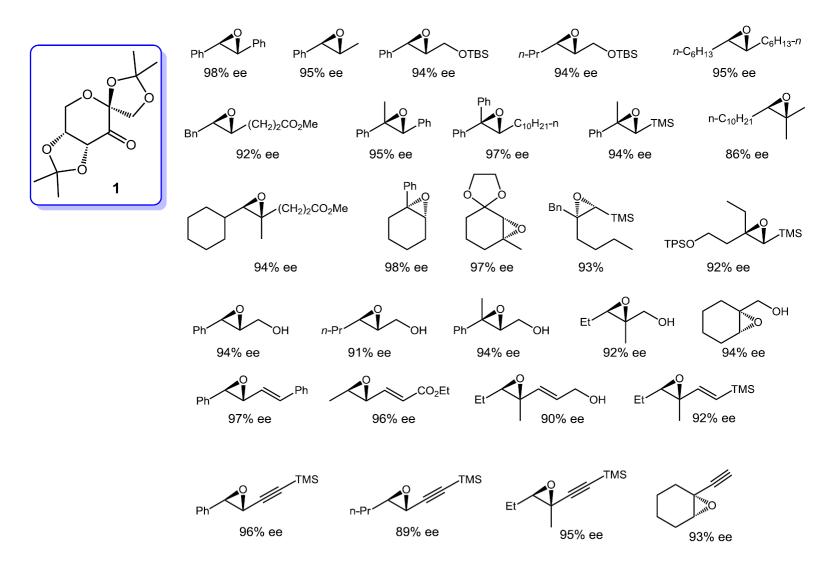
6.2.3 Chiral Ketone-Catalyzed Asymmetric Oxidation of Unfunctionalized Olefins

Chiral Ketone from Carbohydrate

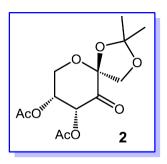
Shi

JACS,**1996**, *118*, 9806

Chiral Ketone from Carbohydrate----high chemoselectivity


Shi

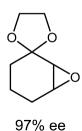
$$R^{1}$$
 R^{2}
 $H_{2}O$ -solvent
 R^{2}
 R^{3}
 R^{2}


Shi

J. Am. Chem. Soc. 2005, 127, 6679.

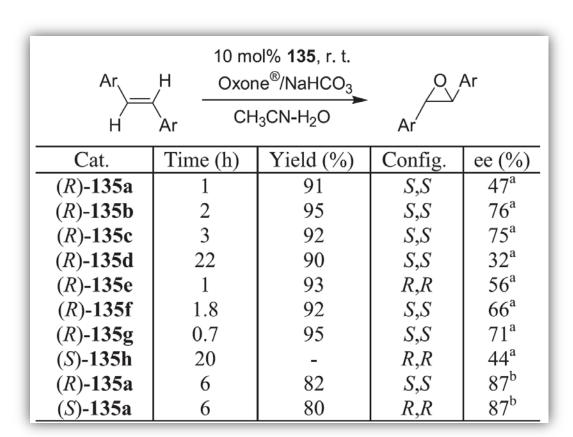
Shi

Shi

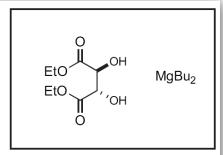


The original Shi catalyst decomposes (via the Baeyer-Villiger pathway) faster than it reacts with electron-deficient α,β -unsaturated esters. A second-generation catalyst, incorporating electronwithdrawing acetate groups, slows the Baeyer-Villiger decomposition.

91% ee


91% ee

91% ee



Yang, D

135
$$X = H$$
 135 $f X = CH_2OCH_3$ 15 $f X = CH_2OCH_3$ 15 $f X = CH_2OCH_3$ 15 $f X = C$

Mg-Catalyzed Jackson Epoxidation

Ln-BINOL Catalyzed Shibasaki Epoxidation

Corey Phase-Transfer Epoxidation

$$R = aryl, Cy, n-C_5H_{11}; R' = aryl$$

Jørgensen, K. A. et al. *JACS* **2005**, *127*, 6964-6965

73% yield 85% ee

Córdova

Tetrahedron Lett. 2006, 47, 99-103.

Lattanzi

OL, 2005, 7, 2579.

OH +
$$t$$
-BuOOH \Rightarrow

Ph + t -BuOOH

 t -BuOH

 t -BuOH

6.4 Nucleophilic opening of epoxides and their applications in organic synthesis

Ti(OPr)₄-Mediated Nucleophilic Opening of 2,3-Epoxy Alcohols.

Nucleophile	$Ti(OPr^i)_4$ (eq.)	Reaction Conditions	Regioselectivity (C-3/C-2)	Yield (%)
Et ₂ NH	0	Et ₂ NH (excess), reflux, 18 h	3.7/1	4
Et_2NH	1.5	Et ₂ NH (excess), r.t., 5 h	20/1	90
<i>i</i> -PrOH	0	<i>i</i> -PrOH (excess), reflux, 18 h	,	0
<i>i</i> -PrOH	1.5	<i>i</i> -PrOH (excess), reflux, 18 h	100/1	88
PhSH	0	PhSH (5.0 eq.), benzene, r.t., 22 h	,	0
PhSH	1.5	PhSH (1.6 eq.), benzene, r.t., 5 min	6.4/1	95
Me_3SiN_3	1.5	Me ₃ SiN ₃ (3.0 eq.), benzene, reflux, 3 h	14/1	74

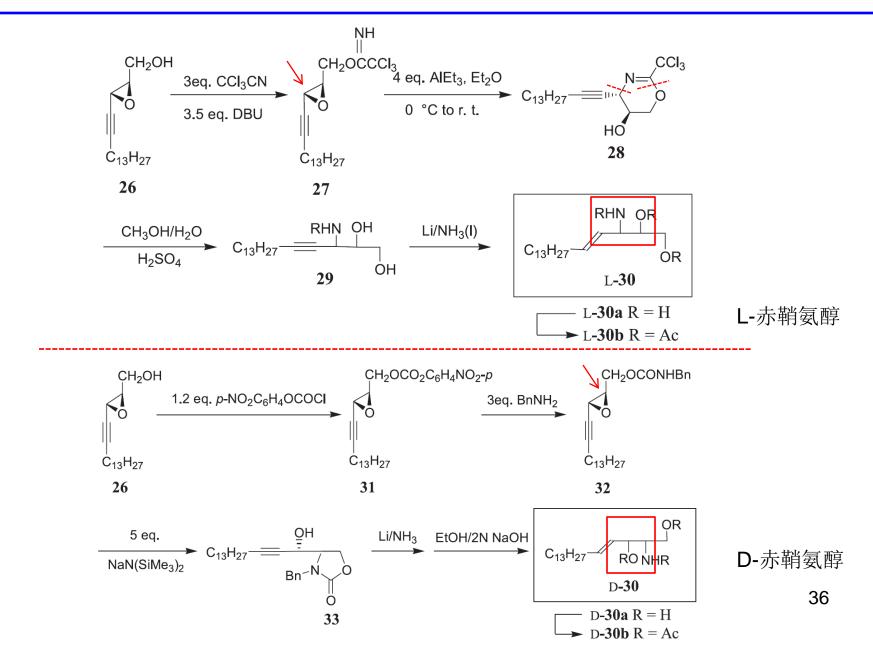
Improved efficiency and regioselectivity with Ti(OⁱPr)₄

- Regioselective Azide Opening of 2,3-Epoxy Alcohols by $[Ti(OPr^i)_2(N_3)_2]$ and Other Azidic Compounds.

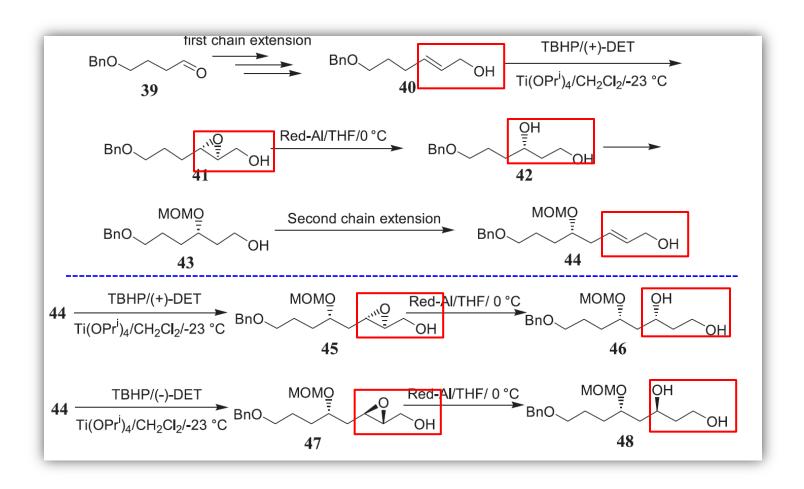
C-3 opening product C-2 opening product

Entry	Substrate	Conditions	Regioselectivity C-3/C-2	Yield (%)
1	0	7 h ^a	5.8:1	95
2	OH	$0.08~\mathrm{h}^b$	36:1	88
3	Ph O	$3.5 h^c$	1.4:1	71
4	ОН	$0.16 \; h^b$	27:1	96
5	OOH	10 h ^c	1.7:1	93
6		$0.25 \; h^b$	20:1	94
7		12 h ^c	1:100	47
8	ОН	0.75 h^b	2:1	96
9	Q	2.75 h ^a	100:1	100
10	PhOH	$0.08 \; { m h}^d$	100:1	76

 $^{^{}a}$ NaN₃/NH₄Cl, 65°C, MeOH/H₂O = 8:1.

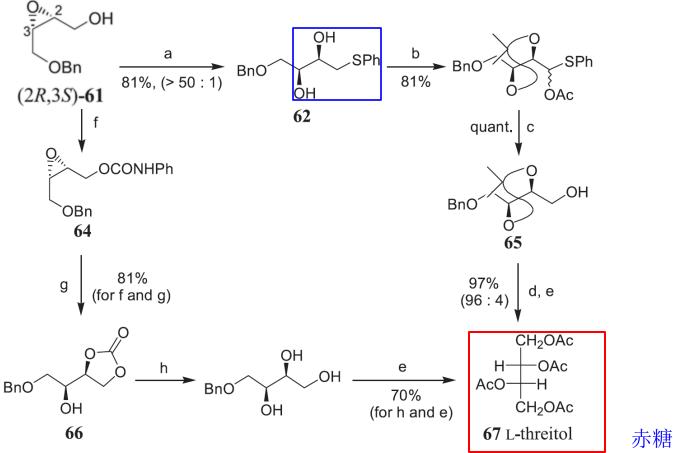

 $^{{}^{}b}\text{Ti}(OPr^{i})_{2}(N_{3})_{2}$, benzene, 70°C .

^cNaN₃/NH₄Cl, CH₃OCH₂CH₂OH:H₂O = 8:1; 124°C.


 $^{^{}d}$ Ti(OPrⁱ)₂(N₃)₂, ether, 25°C.

Ring-Opening Reactions of Epoxy Alcohols with X₂-Ti(OPr)₄.

Opening by Intramolecular Nucleophiles-To improve regioselectivity


Opening by Metallic Hydride Reagents

Opening by Organometallic Compounds

- Payne Rearrangement and Ring-Opening Processes

Payne Rearrangement and Ring-Opening Processes-Application

赤糖醇

Scheme 4-21. Asymmetric synthesis of tetritol isomers 67 and 69. Reagents and conditions: a: NaOH, PhSH (dioxane, H₂O), 65°C, 3 h. b: (1) Me₂C(OMe)₂, H⁺; (2) m-CPBA, CH₂Cl₂, -20°C, 1 h; (3) Ac₂O, NaOAc, reflux, 6 h. c: LAH, ether, 0°C, 1 h. d: MeOH, H⁺, 70°C, 1 h. e: (1) H₂, Pd/C, acidic MeOH, 25°C, 6 h; (2) Ac₂O, C₅H₅N. f: PhNCO, (Et)₃N, CH₂Cl₂, 25°C, 24 h. g: 5% HClO₄, CH₃CN, 25°C, 24 h. h: NaOH, aq. MeOH, 25°C, 24 h.

6.5 Asymmetric Desymmetrization of meso-Epoxides

Scheme 4–22. Enantioselective ring opening of *meso*-epoxides (R' = R'').

80% yield, 97% ee

Scheme 4–24. Gallium–lithium complex-catalyzed ring opening.

6.5 Asymmetric Desymmetrization of meso-Epoxides

t-Bu
$$t-Bu$$

Scheme 4-26

TMSO
$$(R, R)$$
-72 $(X = N_3)$ (S, S) -72 $(X = N_3)$ OTMS (S, S) -73 (S, S) -74 (S, S) -74 (S, S) -75 (S, S)

Thanks for your attention!